Comment on "Computational Investigation of $\mathrm{SO}_{3}-\mathrm{NH}_{3-n} \mathbf{X}_{n}(n=\mathbf{0}-\mathbf{3} ; \mathbf{X}=\mathrm{F}, \mathrm{Cl})$ Interactions"

Paola Antoniotti

Dipartimento di Chimica Generale ed Organica Applicata, Università degli Studi di Torino, C.so M. D’ Azeglio, 48, 10125 Torino, Italy

Stefano Borocci and Felice Grandinetti*

Dipartimento di Scienze Ambientali and Istituto Nazionale di Fisica della Materia (INFM), Unità di Viterbo, Università della Tuscia, L.go dell' Università, s.n.c., 01100 Viterbo, Italy

Received: November 30, 2004

The weakly bound complexes of SO_{3} with simple inorganic and organic molecules are intensively investigated as exemplary cases of noncovalent intermolecular interactions and as a means to better understand fundamental atmospheric processes. ${ }^{1-6}$ In particular, in a very recent study, ${ }^{7}$ Solimannejad and Boutalib have theoretically investigated the interaction of SO_{3} with $\mathrm{NH}_{3-n} \mathrm{X}_{n}(n=0-3 ; \mathrm{X}=\mathrm{F}, \mathrm{Cl})$. Assuming that all these ligands behave as nitrogen donors, they computed the MP2(full)/6$31 \mathrm{G}(\mathrm{d})$ geometries of the $\mathrm{SO}_{3}-\mathrm{NH}_{3-n} \mathrm{X}_{n}(n=0-3 ; \mathrm{X}=\mathrm{F}$, $\mathrm{Cl})$ complexes and evaluated their stability in terms of the energy, enthalpy, and free energy changes of the association

$$
\begin{equation*}
\mathrm{SO}_{3}+\mathrm{NH}_{3-n} \mathrm{X}_{n} \rightarrow \mathrm{SO}_{3}-\mathrm{NH}_{3-n} \mathrm{X}_{n} \tag{1}
\end{equation*}
$$

At the G2(MP2) level of theory, ${ }^{8}$ the $\Delta E(0 \mathrm{~K})$ of (1) resulted as $-17.5 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{SO}_{3}-\mathrm{NH}_{3}$ and reduced to -14.2 , -11.3 , and $-9.8 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{SO}_{3}-\mathrm{NH}_{2} \mathrm{Cl}, \mathrm{SO}_{3}-\mathrm{NHCl}_{2}$, and $\mathrm{SO}_{3}-\mathrm{NCl}_{3}$, respectively. For $\mathrm{SO}_{3}-\mathrm{NH}_{2} \mathrm{~F}, \mathrm{SO}_{3}-\mathrm{NHF}_{2}$, and $\mathrm{SO}_{3}-\mathrm{NF}_{3}$, the reductions with respect to $\mathrm{SO}_{3}-\mathrm{NH}_{3}$ were invariably larger and the interaction energies were computed as $-11.6,-6.1$, and $-3.0 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. The variations in the bond lengths and in the bond angles observed passing from $\mathrm{SO}_{3}-\mathrm{NH}_{3}$ to $\mathrm{SO}_{3}-\mathrm{NH}_{3-n} \mathrm{X}_{n}(n=1-3$; $\mathrm{X}=\mathrm{F}$, Cl) were discussed in terms of natural bond orbital analysis, and a good linear relationship was also established between the complexation energies and the proton affinities of the Lewis bases $\mathrm{NH}_{3-n} \mathrm{X}_{n}(n=0-3 ; \mathrm{X}=\mathrm{F}, \mathrm{Cl})$. Thus, Solimannejad and Boutalib ${ }^{7}$ conclude that the successive fluorine and chlorine substitution on NH_{3} decreases the basicity of the N atom of the ligand and results in a regular decrease of the stability of the nitrogen-coordinated $\mathrm{SO}_{3}-\mathrm{NH}_{3-n} \mathrm{X}_{n}(n=0-3$; $\mathrm{X}=\mathrm{F}, \mathrm{Cl})$ complexes. However, in our opinion, at least for the fluorinated species, any complete description of the structure and stability of the $\mathrm{SO}_{3}-\mathrm{NH}_{3-n} \mathrm{~F}_{n}(n=1-3)$ adducts cannot leave out of consideration the numerous experimental and theoretical studies ${ }^{9-15}$ which indicate that, when interacting with ionic ${ }^{9-14}$ as well as neutral ${ }^{15}$ electrophiles, nitrogen trifluoride, NF_{3}, may behave as a bifunctional Lewis base, able to form N - and

[^0]

Figure 1. MP2(full)/6-31G(d) selected optimized bond lengths (\AA) and bond angles (deg), and G3 thermodynamics of complexation of the $\mathrm{SO}_{3}-\left(\mathrm{NF}_{3}\right)$ isomers $\mathbf{1 a}$ and $\mathbf{1 b}$.

F-coordinated isomers of comparable stability. In addition, the predicted accuracy of G2(MP2) thermochemical estimates, ca. $3 \mathrm{kcal} \mathrm{mol}{ }^{-1}, 8$ does not allow any definitive conclusion on a bound $\mathrm{SO}_{3}-\mathrm{NF}_{3}$ adduct, whose stabilization energy is computed as just $3 \mathrm{kcal} \mathrm{mol}^{-1}$. Therefore, we decided to use the G3 theory, whose predicted accuracy is ca. $2 \mathrm{kcal} \mathrm{mol}{ }^{-1},{ }^{16}$ to investigate the structure and stability of the N -coordinated isomer $\mathbf{1 a}$ and of the F-coordinated isomer $\mathbf{1 b}$ of the $\mathrm{SO}_{3}-\left(\mathrm{NF}_{3}\right)$ complex. The results of our calculations, performed with the Gaussian 98 set of programs, ${ }^{17}$ are shown in Figure 1. Similarly to 1a, isomer $\mathbf{1 b}$ is a true minimum on the MP2(full)/6-31G(d) potential energy surface and results a weakly bound adduct between SO_{3} and NF_{3}. The $\mathrm{S}-\mathrm{F}$ distance is as long as $2.87 \AA$, and the geometries of the two moieties are essentially unperturbed with respect to the uncoordinated molecules. Consistently, at the G3 level of theory, the complexation energy at 0 K of $\mathbf{1 b}$ results as low as $-3.1 \mathrm{kcal} \mathrm{mol}^{-1}$ (the G2(MP2) estimate is -2.2 kcal mol^{-1}). This value is, however, lower than that for $\mathbf{1 a}$ by less than $1 \mathrm{kcal} \mathrm{mol}^{-1}$, and both complexation energies of $\mathbf{1 a}$ and $\mathbf{1 b}$ are larger than the G3 uncertainty of ca. $2 \mathrm{kcal} \mathrm{mol}^{-1}$. Thus, our calculations remove the theoretical ambiguity on the actual existence of a bound $\mathrm{SO}_{3}-\left(\mathrm{NF}_{3}\right)$ complex and suggest also that the ligation of NF_{3} to SO_{3} may occur not only by nitrogen, as suggested by Solimannejad and Boutalib, ${ }^{7}$ but also by fluorine.

Concerning the relative stability of the $\mathrm{SO}_{3}-\mathrm{NH}_{3-n} \mathrm{~F}_{n}(n=1-3)$ adducts, it is difficult, in our opinion, to get a definitive conclusion on the order of the quite close complexation energies of the weakly bound $\mathrm{SO}_{3}-\mathrm{NHF}_{2}$ and $\mathrm{SO}_{3}-\mathrm{NF}_{3}$ adducts.

References and Notes

(1) Hunt, S. W.; Leopold, K. R. J. Phys. Chem. A 2001, 105, 5498.
(2) Givan, A.; Loewenschuss, A.; Nielsen, C. J. J. Mol. Struct. 2002, 604, 147.
(3) Choo, J.; Kim, S.; Kwon, Y. Chem. Phys. Lett. 2002, 358, 121.
(4) Solimannejad, M.; Azimi, G.; Pejov, L. Chem. Phys. Lett. 2004, 391, 201.
(5) Ignatov, S. K.; Sennikov, P. G.; Razuvaev, A. G.; Schrems, O. J. Phys. Chem. A 2004, 108, 3642.
(6) Pawlowski, P. M.; Okimoto, S. R.; Tao, F.-M. J. Phys. Chem. A 2003, 107, 5327.
(7) Solimannejad, M.; Boutalib, A. J. Phys. Chem. A 2004, 108, 10342.
(8) Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1993, 8, 1293.
(9) Fisher, J. J.; McMahon, T. B. J. Am. Chem. Soc. 1988, 110, 7599.
(10) Grandinetti, F.; Hrušák, J.; Schröder, D.; Karrass, S.; Schwarz, H. J. Am. Chem. Soc. 1992, 114, 2806.
(11) Hiraoka, K.; Nasu, M. Fujimaki, S.; Yamabe, S. J. Phys. Chem. 1995, 99, 15822.
(12) Grandinetti, F.; Cecchi, P.; Vinciguerra, V. Chem. Phys. Lett. 1997, 267, 98.
(13) Grandinetti, F.; Vinciguerra, V. J. Mol. Struct. (THEOCHEM) 2001, 574, 185.
(14) Pei, K.; Liang, J.; Li, H. J. Mol. Struct. 2004, 690, 159.
(15) Antoniotti, P.; Borocci, S.; Grandinetti, F. Eur. J. Inorg. Chem. 2004, 1125.
(16) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1998, 109, 7764.
(17) Frish, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. A.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, G.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998.

[^0]: * Corresponding author. Fax: +39 0761 357179. E-mail: fgrandi@ nitus.it.

